From 1 - 10 / 107
  • The Pine Creek airborne electromagnetic (AEM) survey is the largest undertaken in the Northern Territory to date, covering an area of 74,000km squared (roughly the size of Tasmania). Funded by the Australian Government's Onshore Energy Security Program at Geoscience Australia the survey was flown over the Pine Creek Orogen and parts of the McArthur, Victoria River and Daly Basins in the Northern Territory during 2008 and 2009 to enhance exploration for uranium and other mineral systems. Flight lines spaced at 1666m and 5000m were flown over several uranium deposits, including Whites, Dyson, Ranger and Nabarlek, as well as uranium prospects, including Thunderball. The Pine Creek survey comprises three areas: Kombolgie, east of Kakadu National Park; Woolner Granite, near Darwin; and Rum Jungle west of Kakadu National Park. The TEMPEST fixed wing AEM system was used to acquire data in the Woolner Granite and Rum Jungle survey areas. The TEMPEST survey data were publicly released by Geoscience Australia in July and September 2009, respectively. The VTEM helicopter AEM system was used in the Kombolgie survey area and those data were publicly released by Geoscience Australia in December 2009. Nine companies contributed financially to fly detailed areas within the Geoscience Australia funded lines at closer line spacings. Many more industry partners provided important drill hole information, historical EM datasets and access to cased holes for essential conductivity logging. All company infill AEM data will be released to the public domain in December 2010.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Pine Creek airborne electromagnetic survey comprised of three survey areas Woolner Granite, Rum Jungle and Kombolgie. Tempest data were acquired for Woolner Granite and Rum Jungle survey areas and are included in this report. Woolner Granite and Rum Jungle survey areas cover a total of 21 100 line km and an area of 43 200 km2. Phase-1 data, that is, contractor quality-controlled and quality-assessed data for Woolner Granite, Rum Jungle and Kombolgie, were released during 2009. Phase-2 data, that is Geoscience Australia layered earth inversion (GA-LEI) data and derived products for Woolner Granite and Rum Jungle, are included in this data release. The data and products described in this report are contained on the accompanying DVD. The Kombolgie survey data were acquired with VTEM. The VTEM Kombolgie inversion data and report will be included in a separate data release. The main products from the AEM surveys are conductivity depth slices and sections, conductance grids and an AEM Depth of Investigation grid. The data is provided in formats which can be viewed on most computers systems. They include, JPEG (.jpg) with associated world files for easy use in geographic information system (GIS) packages, ER Mapper grids (.ers), ESRI shape files (.shp) of the flight path, and point-located ASCII data with relevant metadata for derived products. This data product is for the infill area RJ7 only.

  • Identification of groundwater-dependent (terrestrial) vegetation, and assessment of the relative importance of different water sources to vegetation dynamics commonly involves detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Consequently, quicker, more regional mapping approaches have been developed. These new approaches utilise advances in computation geoscience, and remote sensing and airborne geophysical technologies. The Darling River Floodplain, western New South Wales, Australia, was selected as the case study area. This semi-arid landscape is subject to long periods of drought followed by extensive flooding. Despite the episodic availability of surface water resources, two native Eucalyptus species, E. camaldulensis (River Red Gum) and E. largiflorens (Black Box) continue to survive in these conditions. Both species have recognised adaptations, include the ability to utilise groundwater resources at depth. A remote sensing methodology was developed to identify those communities potentially dependent on groundwater resources during the recent millennium drought in Australia.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Paterson airborne electromagnetic data were acquired at line spacings of between one and six kilometres, a total of 28 200 line km and covers an area of 47 600 km<sup>2</sup>. The outcomes of the Paterson AEM survey include mapping of subsurface geological features that are associated with unconformity-related, sandstone-hosted and palaeovalley-hosted uranium mineralisation. The data are also capable of interpretation for other commodities including metals and potable water as well as for landscape evolution studies. The improved understanding of the regional geology resulting from the Paterson survey results will be of considerable benefit to mining and mineral exploration companies. Phase-1 data, that is, contractor quality-controlled and quality-assessed data, were released during 2009. Phase-2 data, that is Geoscience Australia layered earth inversion (GA-LEI) data and derived products, are included in this data release. The data and products described in this report are contained on the accompanying DVD. The main products from the AEM survey are conductivity depth slices and sections, conductance grids and an AEM Depth of Investigation grid. The data is provided in formats which can be viewed on most computers systems. They include, JPEG (.jpg) with associated world files for easy use in geographic information system (GIS) packages, ER Mapper grids (.ers), ESRI shape files (.shp) of the flight path, and point-located ASCII data with relevant metadata for derived products.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. Three survey areas were recognised in the Pine Creek AEM survey area: Woolner Granite (TEMPEST), Rum Jungle (TEMPEST) and Kombolgie (VTEM). Industry paid for infill - all of this data has now been released to the public domain and is available at the GA website. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Pine Creek airborne electromagnetic data were acquired at line spacing's of between one and five kilometres, a total of 29 000 line km and covers an area of 73 000 km squared. The outcomes of the Pine Creek AEM survey include mapping of subsurface geological features that are associated with unconformity-related, sandstone-hosted and palaeovalley-hosted uranium mineralisation. The data are also capable of interpretation for other commodities including metals and potable water as well as for landscape evolution studies. The improved understanding of the regional geology resulting from the Pine Creek survey results will be of considerable benefit to mining and mineral exploration companies. This Data Package is for Archive to the internal area of the CDS and contains all data, grids, images, mxd, shape files, documentation, licenses, agreements, interpretations and scripts used to create the Pine Creek deliverables. At the projects completion (2012) all directories are required to be moved off the NAS. The reason to keep all the files is that more work is to be done on this data in the 2012-2015 period and these files may be needed in this future work.

  • Summary reporting of AEM Survey results and interpretations to AEM workshop attendees in Alice Springs March 24th 2011.

  • More recently the O'Farrell government has called for expressions of interest to explore for uranium across NSW. Fugro Airborne Services Pty Ltd also called for expressions of interest in flying a large TEMPEST AEM survey in NSW covering the NSW Curnamona Province and portions of the Murray-Darling Basin and Lake Eyre Basin, abutting the SA border, to complement the Frome AEM Survey. The following is a brief summary of some of the main points discussed and presented during 3 presentations at the NSWGS on 19 September 2012, and in follow-up discussions on 20 September 2012. Approximately 40 people attended the three presentations. A discussion after the talks centred around using AEM in NSW for regional mapping including for uranium, porphyry copper-gold systems and massive sulphide systems. PowerPoint presentations were left with NSWGS. Three abstracts describing these presentations are included at the end of this document.

  • Airborne Electromagnetic data are being acquired by Geoscience Australia in areas considered to have potential for uranium or thorium mineralisation under the Australian Government's Onshore Energy Security Program (OESP). The surveys have been managed and interpreted by Geoscience Australia's Airborne Electromagnetic Acquisition and Interpretation project. In contrast to industry style deposit scale investigations, these surveys are designed to reveal new geological information at regional scale. The Paterson airborne electromagnetic data were acquired at line spacings of between one and six kilometres, a total of 28 200 line km and covers an area of 47 600 km<sup>2</sup>. The outcomes of the Paterson AEM survey include mapping of subsurface geological features that are associated with unconformity-related, sandstone-hosted and palaeovalley-hosted uranium mineralisation. The data are also capable of interpretation for other commodities including metals and potable water as well as for landscape evolution studies. The improved understanding of the regional geology resulting from the Paterson survey results will be of considerable benefit to mining and mineral exploration companies. This Data Package is for Archive to the internal area of the CDS and contains all data, grids, images, mxd, shape files, documentation, licenses, agreements, interpretations and scripts used to create the Paterson deliverables. At the projects completion (2012) all directories are required to be moved off the NAS. The reason to keep all the files is that more work is to be done on this data in the 2012-2015 period and these files may be needed in this future work.

  • Airborne electromagnetic (AEM) data are being acquired by Geoscience Australia (GA) under the Australian Government's Onshore Energy Security Program (OESP) in areas considered to have potential for uranium or thorium mineralisation. In contrast to deposit-scale investigations carried out by industry these surveys are designed to reveal new geological information at a regional scale. The Frome AEM survey shown in Figure 1 was flown by Fugro Airborne Surveys for GA, using the TEMPESTTM time-domain system. The survey was conducted with the aims of reducing exploration risk, stimulating exploration investment and enhancing prospectivity within the region primarily for uranium, but also for other commodities including copper, gold, silver, lead, zinc, iron ore and potable groundwater. The Frome AEM survey was primarily designed to be a regional mapping program for mapping surface and subsurface geological features that may be associated with sandstone-hosted uranium systems. The data are also capable of being interpreted for landscape evolution studies within the flanks of the tectonically active Curnamona Province and Flinders Ranges of South Australia. In this article we present an enhanced set of conductivity estimates which are now available from the GA website free of charge. These conductivity estimates reveal new geological information

  • During 2008 and 2009, and under the Australian Government's Onshore Energy Security Initiative, Geoscience Australia acquired airborne electromagnetic (AEM) data over the Pine Creek Orogen of the Northern Territory. The survey area was split into three areas for acquisition. VTEM data was acquired in the Kombolgie area east of Kakadu National Park (this data set) between August and November 2008. TEMPEST data was acquired west of Kakadu National Park with the area split in two to facilitate the use of two aircraft: the Woolner Granite area in the north was acquired between October and December 2008; and the Rum Jungle area adjoining to the south, was acquired between October 2008 and May 2009. The main purpose of the surveys was to provide additional geophysical/geological context for unconformity style uranium mineral systems and thereby promote related exploration. The survey data will also provide information on depth to Proterozoic/Archean basement, which is of general interest to explorers, and will be used as an input into ground water studies in the region. This dataset includes the subscriber company data K1 K2 and K3.